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SECTION 1

INTRODUCTION

This report presents the results of a Phase I Small Business Innovation Research project

funded by the Office of Naval Research in topic N91-297, Conditioned-Based Machinery

Maintenance. Details of our proposed follow-on work for Phase II are given in ALPHATECH

(1992).

1.1 IDENTIFICATION AND SIGNIFICANCE OF THE PROBLEM

The timely and reliable detection of changes in the dynamic behavior of complex systems

and signals is a problem of considerable importance in a vast array of military and civilian

applications. As we continue to place increasingly demanding objectives on system performance,

cost, and reliability, the needs for and requirements on such detection methods grow

commensurately. For example, the increasing role of and reliance on computer control-for the

fly-by-wire control of advanced high-performance aircraft and helicopters, the navigation of

autonomous vehicles, etc.-makes the detection of system anomalies essential, since by their very

nature such automatic systems simply do not have the luxury of relying on the extraordinary but

workload-limited detection capabilities of their human pilots. Also, the cost of modem-day

military systems are such that there are tremendous payoffs to be gained if the availability of a

weapons system is improved, or its life cycle cost reduced.

These objectives provided much of the motivation for the development of self-repairing

flight control system concepts (Weiss and Hsu, 1987) for the in-flight detection of battle damage

and sensor and actuator failures in advanced aircraft in order: 1) to facilitate control system

reconfiguration to allow mission completion (or at least the safe return of the vehicle), and 2) to

provide early diagnosis of problems that could then speed up the maintenance process and reduce

turn-around time.

Incipient Failure Detection Using Wavelets 1 TR-565
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Furthermore, the reliable detection of component damage or failure can have a dramatic

effect on the cost of maintaining and/or replacing an advanced military vehicle such as a helicopter,

ship, or fighter. Specifically, the total cost of such a system is so high that the objective of

avoiding system loss due to an undetected failure in some component places severe demands on the

overall reliability of components and their monitoring systems.

Moreover, this need for reliability has typically led to the adoption of extremely

conservative maintenance and replacement procedures: components are automatically replaced after

time in service reaches a prescribed limit, usually taken to be significantly less than their expected

failure times. Thus the availability of advanced and reliable fault detection systems offers the

promise not only of improved system reliability but also the possibility of increasing component

time in service by detecting the onset of problems and thus allowing "retirement for cause" rather

than the more expensive present practice of replacing components whether they need it or not.

These and a variety of other factors and applications have led to considerable research and

development activity over the past 20 years resulting in an array of detection and diagnosis

methods (see, for example, the widely referenced surveys Willsky (1976) and Basseville (1987))

providing us with an analytically sound, proven-in-practice foundation from which to pursue the

new challenges arising as we push harder on the envelope of performance, reliability, and cost.

Moreover, in the past few years significant new methods of signal analysis and pattern recognition

(in particular, wavelet transforms and artificial neural networks) have been developed offering the

promise of adding significantly to the arsenal of detection methods and to the range of applications

that can be dealt with successfully.

1.2 OBJECTIVES OF PHASE I

1 The objective of the Phase I effort was to assess the efficacy of wavelet techniques for

selecting features upon which an adaptive classifier could base its decisions regarding abnormal

changes in system behavior. For reliable, robust classification with low false alarm rates, these

features must be:

Incipient Failure Detection Using Wavelets 2 TR-565



I ALPHATECH, INC.

I - high energy in at least one case (normal or failed) in order to persist even in the
presence of environmental noises or transient disturbances; and

- statistically significant in separating two or more cases from one another in order to

contribute meaningful information to the pattern classifier.

I Our objective was not to develop new classification techniques, but rather to modify off-

the-shelf artificial neural network (ANN) (Lau and Widrow, 1990a, 1990b) technology as needed

j to integrate it with a front-end feature extractor based on wavelet techniques.

Wavelets offer many different ways to access the structure of a signal in time/scale space.

The continuous wavelet transform (CWT) (Ruskai, Beylkin, et al., 1992; Daubechies, 1990;

Mallat, 1989a, 1989b; Meyer,1988) converts a time signal into an image, from which features can

be extracted using image processing techniques. The wavelet packet transform (WPT) (Coifman

and Wickerhauser, 1992; Coifman et al., 1990) derives coefficients of wavelet basis functions that

characterize time/scale energy distribution in a much more flexible manner than discrete Fourier

I transforns (DFTs) permit. Variations on the WPT permit the selection of subsets of an

overcomplete set of basis functions to find the most significant elements of a signal. More recent

extensions to wavelet techniques, presented under the general classification of multiscale signal

processing, create even more options for feature characterization. Our initial goal was to select

several alternatives, and to compare their performance and computational requirements in the

context of whatever data were available. Because of time and budget constraints, however, we

limited our comparison to CWTs and WPTs.

Because the dominant challenge in failure detection problems is to identify a concise yet

distinctive set of features on which the detection/classification process can be made to depend, our

emphasis in Phase I was on the back-end of the feature-selection process, i.e., we assumed that the

full set of wavelet transform coefficients was already available, and then determined which were

most critical to good performance of an ANN classifier. Helicopter gearbox and shipboard pump

accelerometer data, supplied by the Navy, were passed through a CWT or WPT preprocessor, and

then used to train ANN classifiers. Statistics on false alarm rates, miss detections, and

misclassification errors were used to quantify the performance of the proposed methodology.

Incipient Failure Detection Using Wavelets 3 TR-565
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1.3 OVERVIEW OF PHASE I RESULTS

Phase I of this effort clearly demonstrated the feasibility of incipient fault detection for

vibrating systems not only for bench test conditions (helicopter gearbox) but also for mild

operating conditions (condensate and fire pumps). Remarkable Phase I results were obtained by

using a balanced combination of CWTs and ANNs. We used the CWT to select features for an

ANN classifier. The wavelet transform provided enough visibility into fault signals to allow us to

reduce the size of the feature set to 10-15 features. We used a low-dimensional, conventional

ANN classifier (Widrow et al., 1988) with rejection of ambiguous classifications. We achieved

0.000 probability of false alarm, 0.000 probability of missed detection, and < 0.04 probability of

deferral (to a subsequent feature vector) for all three data sets provided by ONR. The major

product of out Phase I work is a single methodology to identify robust features that lead to these

performance levels.

1.4 REPORT ORGANIZATION

Section 2 describes the major components of the technical approach and the main results of

this Phase I effort. Section 3 presents the main conclusions and recommendations for future

effort. Appendix A contains an overview of the CWT and presents some examples to give the

reader insight into the time-frequency information provided by the CWT based on the Kiang

wavelet used in this work.

Incipient Failure Detection Using Wavelets 4 TR-565
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SECTION 2

TECNIICAL APPROACH TO PHASE I

This section describes the data used, the major components of the technical approach, and

the main results obtained for the three types of vibrating systems considered in this work. The

most important steps of the technical approach are illustrated with selected examples based on the

available data sets and using illuminating color plates (located just before the body of this report).

2.1 DATA USED IN PHASE I

For this research, ONR supplied data (through the Naval Command, Control, and Ocean

Surveillance Center, NCCOSC) for three vibrating systems: helicopter gearbox, condensate

pumps, and fire pumps. These data are from accelerometers that measure vibrations at one or more

places on the case of the vibrating mechanism.

The gearbox data (from a TH-IL helicopter intermediate (42-degree), relatively simple,

gearbox) consisted of vibration readings (sampled at 48 kHz) from two accelerometers (channels 5

and 6, oriented with and orthogonal to the bearing load zones, respectively) mounted on the

gearbox output end for six separate fault conditions: no defect (ND), bearing inner race fault (IR),

bearing rolling element fault (RE), bearing outer race fault (OR), gear spall fault (SP), and gear 1/2

tooth cut fault (TC). This is a subset of the "Hollins data base," developed by Mark Hollins of the

Naval Air Test Center (NATC). The pump data consisted of vibration readings (sampled at 50

kHz) from two accelerometer triads (axial, radial, tangential) mounted on the motor and pump ends

of the assembly, one triad on each end. The condensate pump data consisted of eight data

segments that included two fault types and unfailed data. The fire pump data consisted of 16 data

segments that included four fault types and unfailed data. Unlike the helicopter data, which are

bench test data with seeded faults, the pump data were obtained from shipboard pumps operating

under relatively mild conditions.

Incipient Failure Detection Using Wavelets 5 TR-565
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I Tables 2-1 and 2-2 present all the information we were given on the condensate and fire

pump data, respectively. In both cases, fault code 0 is used to label good pumps (normal cases).

Also, fire pump fault codes 3A and 3B denote the same fault type on different pumps.

TABLE 2-1. CONDENSATE PUMP INFORMATION

Segment Number Pump ID Fault Code RPM

1 CP-IA 1 900

2 CP-1B 0 900

S3 CP-4A 2 885

4 CP-4B 0 885
S5 CP-2A 0 890

6 CP-2B 0 890

S7 CP-3A 0 892

8 CP-3B 2 892

TABLE 2-2. FIRE PUMP INFORMATION

Segment Number Pump ID Fault Code RPM

1 FP-9 3A 3576

2 FP-3 0 3585

3 FP-2 0 3585

4 FP- 1 0 3585

5 FP-4 0 3575

6 FP-5 0 3580

7 FP-6 0 3580

8 FP-5A 0 3585

S9 FP-6A 4 3580

10 FP-13A 0 3590

S11 FP-12 5 3585

12 FP-13 3B 3580

13 FP- 14 6 3570

14 FP-17 0 3585

15 FP-16 0 3585

16 FP-15 0 3588

Incipient Failure Detection Using Wavelets 6 TR-565
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For our test systems we used only one channel, from one sensor-we deferred fusion of

results from multichanncI data to Phase II. For the gearbox system, only channel 5 was used for

all conditions. For both pump systems, only the axial component of the pump-end accelerometer

triad was used. In a sense, we deliberately made the Phase I problem harder by ignoring some

sources of information in order to demonstrate the power of wavelet techniques, or lack thereof, on

a fault detection/classification problem more dificult than one would expect to encounter in the

field under more severe conditions.

2.2 SYSTEM STRUCTURE

We adopted the conventional architecture of an adaptive classifier (Fig. 2-1): a real-time

preprocessor to focus the information about the stat - of a system into a low-dimensional feature

vector, followed by an adaptive pattern analyzer to map feature vectors into detections and

classifications. Our work emphasized the development of the preprocessor, using the insight

offered by recent advances in the mathematics of wavelets.

I
-- .DETECTIONS

TUNABLE GO TO PILOT/OPERATOR

PREPROCESSOR NEURAL NET
EXTRACTS A CLASSIFIES

SET OF WAVELET FAULTS USING

TRANSFORM THOSE FEATURES

FEATURES CLASSIFICATIONS
GO TO MAINTAINEFIS

SENSORS FEATURE 8-16 ELEMENT PATTERN RESULTS
DETECTORS FEATURE ANALYZER

VECTORS

Figure 2-1. Incipient Fault Detection and Classificatior System Structure

Our Phase I proposal indicated that our approach of choice was to use the WPT (Coifman

and Wickerhauser, 1992; Coifman, Meyer, et al.; 1990) to identify locations in time/scale space

indicative of faults. This approach met with less than expected success. With hindsight, coupled

with analysis of considerable performance data generated during the project, we believe that the

WPT is most appropriate for problems where classification depends on the timing and internal

structure of transient events, such as classifying biological sounds in the sea. They offer

Incipient Failure Detection Using Wavelets 7 TR-565
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considerably less advantage in fault analysis of vibrating systems, where the signatures are of

relatively long duration and statistically quite stationary. However, we reserve interest in the WPT

for detecting incipient faults in systems that emit transient signals as part of their normal operation

(e.g., heavy duty mechanical or electrical switching systems).

As an alternative, we turned to the CWT. Like other image-visualization techniques such

as the sonogram, lofargram, or waterfall display, the CWT converts a one-dimensional signal into

a two-dimensional image, using substantial computational resources. Sub-bands of the CWT can

be evaluated quite efficiently in a preprocessor, however. Therefore, we use the full-blown CWT

during the design process to identify a few bands that differentiate among cases, and only

implement actual feature detectors for those specific bands-tofocus the information available in a

signal into a small set offeatures. This allows us to find very small feature vectors (of the order of

10 - 20 elements) that nonetheless yield outstanding detection and classification performance. A

brief explanation of the CWT and examples of the CWTs of elementary signals are presented in

Appendix A.

For the pattern analyzer, we used conventional three-level, feedforward ANNs. As will be

seen, we succeeded in finding feature sets that are nearly convex and linearly separable, so we did

not need complex network topologies or exotic training algorithms. (In fact, we were able to set

the number of elements in the hidden layer equal to the number of output elements).

To improve performance we suppressed classification results entirely if the maximum

output value was less than some multiple of the next larger output value, deferring the classification

to the next available feature vector. We could trade deferral rate for false alarm/missed detection

performance by changing this multiple. A multiple of 2.0 was adequate to eliminate all false alarms

and missed detections, and kept the deferral rate below 4%.

The Phase I feature-selection process used a number of tools to develop feature sets.

KHOROS signal processing routines (KHOROS Group, 1992), on a SUN computer, supported

editing and preliminary analysis of raw data files. A custom Macintosh Pascal package computed

the CWT, and another one extracted the selected feature vectors from the raw data. Excel, a

Incipient Failure Detection Using Wavelets 8 TR-565
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commercial package from Microsoft, supported the statistical cluster analysis. Macintosh

NeuralWorks, a commercial package from NeuralWare, was used to carry out the ANN training

and testing. MATLAB, a commercial package from The Math Works, Inc., was used to compute

performance metrics.

2.3 WAVELET-BASED TUNABLE PREPROCESSOR

I Figure 2-2 presents the wavelet-based tunable feature extractor developed in this Phase Iu effort. The CWT is computed using the Kiang wavelet, which allows one to select appropriate

frequency and time resolutions to extract from the CWT the features of interest. According to the

3 signal characteristics one may have to smooth and decimate the CWT before extracting the

frequency bands of interest. These bands are then parameterized to achieve better feature

I separability. Because of the properties of this wavelet-based feature extractor, it is not necessary to

compute the entire CWT to extract a few features; only the frequency bands associated with the

features of interest need to be computed. This leads to a significant reduction of computational

effort if the number of selected features is relatively small (say, 10 to 20). (Note that while this

preprocessor is currently implemented in software, it is a good candidate for hardware

implementation-on a Macintosh Quadra 900 computer, with no optimization, it runs about 100

times slower than real time.)

If CEN-TER FR ENERGY,FrT PEAK CUIRVATURE
KIANG C M UESMOOTH ENERGY,--

48KHZWAEEL.. MAGNITUDE ANDIRVAUR

- DETECTOR 48KHz 48 DECIMATE CURVTUR

Fe~j• re •CENTER FREOUENCY

frequency

Figure 2-2. Tunable Feature Extractor

As our emphasis in Phase I was on the selection of a concise, focused feature set, we

employed the visibility into time/scale space offered by the CWT. Our objective was to focus all of

the potentially available time/frequency information into a small feature space, since a small,

Incipient Failure Detection Using Wavelets 9 TR-565
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separable feature set reduces the complexity required of a classifier, and hence the risk of slow or

non-convergence.

Another advantage of the CWT is its ability to isolate robust high-energy features that can

be readily detected and can be suppressed only with a great deal of external energy. Our approach

to feature selection was explicitly to ignore regions of time/scale space with consistently low

energy, on the grounds that whatever classification might be possible using such features would

not be robust to disturbances. (However, we did include one low-energy band specifically as a

disturbance detector, where classifications would be suppressed whenever substantial energy

appeared in this band.) We knew that bench test or mild-operation data is invariably cleaner than

field data (it may not represent a complete range of normal operations or disturbances, and may

contain artifacts not present in real data) and therefore we sought features that would serve as well

in noisy environments as they do on these data sets. Thus we are prepared to handle much more

challenging data, since we address robustness at the very beginning of the feature-selection

process.

2.3.1 The Continuous Wavelet Transform

The CWT appears as an image. It is qualitatively similar to other imaging representations

of a signal, such as sonograms, lofargrams, or waterfall displays. The biggest distinction is that

one raster line appears in the imagefor every sample in the signal-there is no windowing of the

data, and hence no artifacts in the image due to windowing. Minor distinctions include the fact that

the scale axis is logarithmic, since wavelet theory involves continuous scaling of a single basis

function. If one thinks of the discrete Fourier transform as the output of a bank of constant-

bandwidth filters, then one can think of the CWT as the output of a bank of constant-Q (ratio of

I bandwidth to center frequency) filters. (The WPT, on the other hand, is like a variable-bandwidth,

variable-Q filter bank (Vetterli and Herley, 1990).)

Visual analysis of the CWT reveals areas of interest in vibrational data. The raw CWT

magnitudes include high-frequency artifacts that can be removed by smoothing over time. The

helicopter data segments show high-energy, narrowband features overlaid by short disturbances.

Incipient Failure Detection Using Wavelets 10 TR-565
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The pump data segments show lower-energy, broadband features overlaid by regular impulsive

disturbances. In all cases, all features are stable over time.

The CWTs presented in the color plates referenced in the sequel (and located just before the

body of this document) illustrate these general observations. These CWTs use the Kiang wavelet

(fine frequency, coarse time resolution). Hue encodes the log magnitude of the CWT (blue = low,

red = high). Phase information is ignored. Time divisions are 62.5 msec wide. The frequency

scale is logarithmic, and frequency divisions correspond to octaves.

2.3.2 Smoothing the CWT

The two images in Plate A are from the first 500 msec of channel 5 of the normal helicopter

gearbox data (sampled at 48 kHz). The left image is the CWT sampled every 2 msec-the full

CWT for this data segment would be 24,000 pixels high. The bright red line just below 2,048 Hz

is the gear mesh fundamental. Harmonics of this fundamental appear at higher frequencies (finer

scales), although there appears to be little energy in the fourth, sixth, and seventh harmonics under

normal conditions. The data appears to be high-pass filtered with a cut-off frequency around 1

kHz, although some frequency lines are clearly visible below this point.

Because faults in vibrating systems impact a sensor on every cycle of the mechanism, we

seek features that persist over relatively long periods of time (many cycles). While the texture of

the raw CWT between harmonic lines is interesting, it would be imprudent to attempt to classify

faults based on the structure of this texture. Thus for this data set, and for all other CWT images

we constructed, the image was smoothed in the time dimension to suppress high-frequency

textures, and enhance the stationary elements of the signal. The right image in Plate A shows the

results of this smoothing. Among other things, the smoothing enhances the appearance of a

secondary line just above the mesh fundamental. Also, some 5 Hz modulation on the fifth

harmonic becomes more apparent.

Note that we do not present this entire image to the ANN for classification. Our goal is to

identify features in the image that can be parameterized, and to compute much more concise

parameter vectors from the image to submit to the net.
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Note also that the CWT visualization makes the feature-selection process quite efficient.

Having developed a methodology on the gearbox data, we were able to construct low-dimensional

feature sets for the two pump data sets in a matter of hours.

2.3.3 Changing the Wavelet Basis

The two images in Plate B are from the first 500 msec of failed condensate pump data (CP-

1A from Table 2-1). The left image is the analog of the smoothed helicopter CWT. It immediately

shows the lack of stable, narrowband elements in the signal. Again, it would be imprudent to

attempt classification based on the microstructure of the transient narrowband features in this

image. Instead, we seek more broadband features.

One appeal of the CWT is that it allows one to continuously vary time/scale resolution. By

changing the wavelet on which the transform is based, one can sacrifice resolution in scale-which

is exactly what is necessary to find broadband features. The right image is the same data, but

I using a wavelet transform with 1/10th the frequency resolution (along with additional smoothing

over time to suppress transients and textures). This image clearly shows the locations of high

energy content-and these regions are surprisingly stable compared to those of the left image.

2.3.4 Channel Selection

The two images in Plate C are from the first 500 msec of unfailed fire pump data (FP-3

from Table 2-2). The left image is from the radial channel, the right from the axial channel. Lines

for the first few harmonics of the shaft rotation frequency (about 60 Hz) are clearly visible, along

with a faint harmonic series based at about 400 Hz, and some broadband signal from 300 Hz to

1,500 Hz.

As mentioned earlier, we limited Phase I processing to a single channel of data for each

equipment type (so that we did not exhaust all of the potential processing gain on these clean data,

and thus can offer ways to counter the additional complexity one would expect in field data). We

selected the axial channel alone for further processing for the pump cases, and channel 5 alone for

the gearbox case.
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2.3.5 Gearbox Fault Signatures

Plate D shows segments of the CWT for the six cases of gearbox data. Each image

represents 250 msec of signal, from 512 Hz to 16 kHz. Note the difference in structure of the

CWT around the third harmonic of the mesh frequency (1,935 Hz)-both in breadth and texture.

2.3.6 Gearbox Fault Masks

Plate E shows the same segments of the CWT for the six cases of gearbox data, with low-

energy regions masked out. Our rationale for this is to prevent using features that are weak, as

they are easily compromised by disturbances or interference and hence do not contribute to high

reliability detection. The technique used to mask these regions is basically local noise floor

estimation across scale, masking areas that fall below that estimated floor. Note how this

technique highlights the significant differences in structure around the third harmonic, and also of

the 1,050 Hz line. Techniques such as this morphological filter provide quantitative evaluation of

feature set performance before time and energy is spent training and testing the adaptive classifier.

2.3.7 Condensate Pump Signatures

Plate F shows the CWTs for 125 msec of the axial channel for each of the eight condensate

pump data segments in Table 2-1. The log frequency scale, between 16 Hz and 16 kHz, is divided

into octaves. Segment 1 contains a fault of type 1, segments 3 and 8 each contain a fault of type 2,

and the rest are good pumps (normal case). Note that the CWTs show clear differences between

pumps in pairs of segments 1 and 2, 3 and 4, 7 and 8. Each of these pairs includes a normal pump

and a defective pump. On the other hand, segments 5 and 6, both from good pumps, display

similar high-energy features.

In contrast with the helicopter gearbox data, the condensate pump CWTs contain wider

high-energy regions, but they are-as in the gearbox case-relatively stable over time.

2.4 FEATURE SEPARATION

Detection and classification become exceptionally easy if the clusters of features

corresponding to different cases exhibit two properties: convexity and separability. In these cases,
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classification becomes a matter of estimating boundaries to separate the clusters-and we can

allocate one element of the hidden layer of an ANN to each cluster.

One never knows ahead of time whether or not a feature set will be convex and separable.

We selected 500 msec of data from each case provided as a basis for statistical analyses of

separability. We used features that essentially correspond to a few frequency slices through the

CWT--energies in particular frequency bands. We selected the set of bands to use on the basis of

overall energy content-recall that robust classification is possible only from features with high

energy differences between cases. In the cases of the gearbox and fire pump data, with strong,

clear, narrow fundamentals, we adapted the frequencies to the center of that line (using the features

themselves instead of referring to external synchronization signals). For the condensate pump data

(which lack such a stable reference feature and whose energies are more dissipated across

frequency), we left the frequency bands constant.

After collecting candidate features, but before training an ANN, we evaluated feature

cluster separations. Table 2-3 shows the maximum separations between all pairs of clusters in

terms of Fisher coefficients-essentially distances normalized to units of standard deviations. This

TABLE 2-3. PHASE I CLUSTER SEPARATIONS, HELICOPTER DATA

ND IR FE C SP TC
Normal 0.00 5.67 10.79 9.79 11.14 11.28

Inner Race 5.67 0.00 4.13 5.25 13.31 6.05
Rolling Element 10.79 4.13 0.00 2.07 5.89 3.45

Outer Race 9.79 5.25 2.07 0.00 7.18 3.29
Gear Spall 11.14 13.31 5.89 7.18 0.00 8.61
Tooth Cut 11.28 6.05 3.45 3.29 8.61 0.00

table was obtained by computing for each feature vector the Fisher coefficients between all fault

condition pairs, and then selecting the maximum coefficient across all feature vectors for every

fault condition pair. Any pair of clusters more than three or so units apart should be readily

separable by an ANN classifier.

We found that the CWT features provide good separation between cases. Below is a

summary of the main characteristics of these features for each of the test systems.
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Helicopter gearbox feature vectors (channel 5) contain heights of narrowband (1/35) octave

lines

line center frequencies adapt to changes in fundamental mesh frequency

lines were selected at first six harmonics of mesh frequency, plus two other frequencies
suggested by the CWT (0.5525*f, 2.7*f, where f is the fundamental mesh frequency)

* feature clusters are nearly ellipsoidal

* minimum feature cluster separation is 2.07 standard deviations (outer race/rolling
element)

Condensate pump feature vectors (axial channel) contain energies in wider regions (1/6

octave)

* center frequencies are fixed over time (and cases)

- bands were selected at octave intervals (32-1,024 Hz), and at 1/4 octave intervals
within high energy octaves (64-128 Hz, 512-1,024 Hz)

- feature clusters are nearly ellipsoidal

* minimum feature cluster separation is 5.87 standard deviations (CP-1A/CP-4B)

Fire pump feature vectors (axial channel) also contain both narrowband and broadband

featuresI 
* center frequencies adapt to changes in fundamental shaft frequency (limited to within

2% nominal)

* narrow bands were selected at first 8 shaft harmonics, and at octave intervals within
high energy octaves (512-2,048 Hz)

* some feature clusters show some suspiciously high correlation (probably due to
clipping?)

* minimum feature cluster separation is 2.23 standard deviations (Fault 3/Fault 6)

The following three subsections graphically illustrate with color scattergrams the striking

feature separation for some feature pairs and all fault conditions for each of the test systems

examined in this work.

I 2.4.1 Gearbox Separation

Plate G presents the feature clusters computed from 3 seconds of gearbox data across all

six cases. Feature vectors can be obtained every 10 msec, so there are about 300 sample vectors
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here. This plate shows the projection of the feature clusters onto a two-dimensional subspace

defined by the power found in the second harmonic of the mesh frequency, and at a subharmonic

line around 1,050 Hz. Note that: 1) all of the feature clusters appear convex, 2) the normal case is

well separated from the fault cases by these two features alone, and 3) several pairs of faults can be

separated as well. Other pairs of features provide different kinds of separation, but all show

* convex clusters.

2.4.2 Condensate Pump Separation

Plate H presents the feature clusters from 0.5 second of condensate pump data across all

eight cases. There are about 30 feature vectors per case. It shows the projection of the feature

clusters onto the two-dimensional subspace defined by the power near 615 Hz, and near 1,024 Hz.

Again, note that: 1) all of the feature clusters appear convex, 2) the normal cases are well separated

from the fault cases by these two features alone, despite being more diffuse due to variations

among units, and 3) type 1 and type 2 faults can be clearly separated as well. Other pairs of

features provide different kinds of separation, but all show convex clusters.

2.4.3 Fire Pump Separation

Plate I presents the feature clusters computed from 0.5 second of fire pump data across all

16 cases. There are about 30 feature vectors per case. It shows the projection of the feature

clusters onto the two-dimensional subspace defined by a narrow band around the seventh harmonic

of the shaft rate and a wider band around 2,048 Hz. Note some suspicious characteristics of these

clusters. The seventh harmonic of the normal data seems to be limited by a floor at 42 dB below

the shaft fundamental, making detection and classification of fault type 3A (light blue squares-

FP-9 from Table 2-2) exceptionally easy. Also, for three of the test cases (one normal and two

fault), the values of these features are exactly 6 dB apart, a relationship that is highly unlikely in

truly random data. It is important to supplement the power of data-driven approaches with some

understanding of the physics of the system under study-why classification regions are the way

they are-in order to gain confidence that the classification logic is truly robust to any artifacts that

may be in the training data.

Incipient Failure Detection Using Wavelets 1 6 TR-565



ALPHATECH, INC.

2.4.4 Artifacts in Training Data

Through an example, this subsection illustrates the need to select features for classification

based not only on their separation but also on the physics of the fault mechanism. The risk is that

I data presented to the ANN classifier may contain variations upon which classification may be

based, but which bear no causal relationship to fault mechanisms. For example, we selected a

I feature at the sixth harmonic of the mesh frequency for the gearbox data to serve as a disturbance

detector. In this frequency range (12 kHz), there is very little energy in any of the data unless a

i disturbance is present. Our idea was that if a feature vector with relatively high energy (> 45 dB

I below the power in the mesh fundamental) were presented to the neural net, it would result in an

ambiguous classification and any output deferred until the disturbance subsides.

Quite another thing happened. Plate J shows the gearbox feature clusters projected onto the

subspace defined by the fifth and sixth harmonic power levels. Note the obvious separation

between ( Normal, Inner Race), (Outer Race, Rolling Element, Tooth Cut), and (Gear Spall).

The fact that the magnitudes of sixth harmonic power levels are so small suggests that this

frequency is near a zero in the transfer function between the vibrating mechanics and the sensor.

The fact that their variation is so small suggests that the energy in this band is largely background

energy, or conveyed through a convoluted transmission path. In either case, the variations among

cases are unlikely to be caused by the faults themselves, but rather by the process of inserting and

removing faults. An adaptive classifier will happily use the power level at the sixth harmonic to

separate the Normal case from, say, the Gear Spall. Only additional insight into the physics of the

transmission mechanism, or a set of data including several insertions of the same fault, would

prevent field deployment of a classifier that treats this artifact as a valid source of information.

1 2.4.5 Guidelines for Finding Robust Feature Sets

Based on this Phase I effort we have developed a set of guidelines for finding robust

feature sets in CWT images. These guidelines can be summarized as follows:

Be sure that features are robust to external disturbances: we seek high energy content
features to be derived from morphological filtering on the scale axis of the CWT, with
narrow bandwidths to reduce their sensitivity to impulsive disturbances. Features must

Incipient Failure Detection Using Wavelets 17 TR-565



I ALPHATECH, INC.

I also be redundant to exploit the correlation among features, and they must be frequently
computed as permitted by the largest time constant in the preprocessor.

" Be sure that features are diverse: it is desired to include features across a wide range of
frequencies, for example, the first six harmonics of important narrowband vibrations
(gearbox) or octave samples of broadband components (pumps). In addition, it is
desired to include one or more low-energy features to support disturbance rejection.

" Be sure that features distinguish normal from abnormal conditions: for this we need to
compute statistics (mean, standard deviation) on each CWT bin and look for significant
differences that will lead to features with high discriminating power.

1 2.5 ARTIFICIAL NEURAL NETWORK CLASSIFIER

For an adaptive classifier we used a feedforward ANN of the back-propagation type with

one input layer, one hidden layer, and one output layer. The number of processing elements (PEs)

in the input layer varied with the vibrating system between 12 and 15. The number of output PEs

also varied with the vibrating system, according to the number of fault conditions, including the

normal cases. Because of the convexity and linear separation of the feature vector clusters for all

the vibrating systems of Phase I, the number of hidden layer PEs was set equal to the number of

output PEs. Table 2-4 presents the number of PEs per layer for each of these systems.

TABLE 2-4. NUMBER OF PROCESSING ELEMENTS PER ANN LAYER

HELICOPTER CONDENSATE
LAYER GEARBOX PUMPS FIRE PUMPS

Input 15 12 13

Hidden 6 8 16

Output 6 8 16

Total PEs 27 28 45

For the design, training, and testing of the ANNs we used a commercial software package,

NeuralWorks (NeuralWare, 1992), running on a Macintosh platform. For each of the three

systems, convergence to the specified RMS error of the difference between the desired and the

actual outputs occurred relatively fast-after between 5,000 and 10,000 random presentations of

the feature vectors included in the training set. Given the simplicity of the ANNs used in this

work, their small size, and the excellent feature clusters separation made possible by the judicious

utilization of the CWT, no sophisticated training algorithms were required.
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From the test set results, we computed the following measures of effectiveness for each

vibrating system: probability of false alarm, probability of missed detections, probability of

misclassification, and probability of deferral. Probability offalse alarm is the probability that a

fault is announced when there is no fault present. Probability of a miss detection is the probability

that no fault is announced when there is a fault present. Probability of misclassification is the

Iprobability that a fault type is announced when a different fault type is present. Probability of

deferral is the probability that the classifier defers a decision when a case for decision (a feature

I vector) is presented to it.

For the purpose of this work, a feature vector leads to an ambiguous situation when the

absolute difference between the two largest competing outputs is less than some specified

tolerance. In these cases, the classifier refuses to announce a decision and considers the next

feature vector. The consequence of this deferral is to decrease the probabilities of false alarm and

I missed detections, and to increase the time delay for a classifier decision. For instance, feature

vectors for the gearbox system are computed every 10 msec, so the price paid in time delay for

each deferral (or rejection) is only 10 msec.

The computation rate of feature vectors depend on the time constants selected for the

wavelet preprocessor. Extracting feature vectors at a period exceeding the largest of these time

constants leads to statistical independence. This period can be quite short. Table 2-5 presents the

maximum time constants and number of feature vectors per second allowed by such time constants

for the three vibrating systems of Phase I.

We deliberately avoided using all available techniques to solve the Phase I problem. We

arbitrarily limited ourselves to single-channel processing, with instantaneous classification, in

order to have some additional processing techniques available to deal with expected additional

complications contained in real data.

I
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TABLE 2-5. PREPROCESSOR TIME CONSTANTS AND FEATURE VECTOR RATES

FEATURE VECTORS PER
UNIT MAX TIME CONSTANT SECOND

Helicopter gearbox 10 msec 100

Condensate pump 25 msec 40

Fire pump 25 msec 40

One of these techniques is temporal fusion. We compute feature vectors as fast as possible

while maintaining statistical independence (i.e., at a rate limited by the longest time constant in the

preprocessor). For the gearbox data, we computed feature vectors every 10 msec, and classified

each and every one. To robustify the classification process against transient disturbances, we can

simply compaie output classifications over a window of, say, 100 feature samples (one second of

data). If, say, fewer than 95 of the classifications agree, we assume a disturbance (and not a fault)

is present. This dramatically reduces the theoretical probability of false alarm, at the cost of an

additional second of delay in producing a warning-a very attractive tradeoff for most situations.

2.6 FAULT DETECTION AND IDENTIFICATION RESULTS FROM PHASE I

Given the preceding insight into the derivation of high-energy wavelet features and the

convex, separable clusters they form in feature space, it should be no surprise that good

I classification results are possible. Providiag afeature set that captures the important discriminants

between normal operation and faults vastly simplifies the problem of designing an adaptive

classifier that achieves good performance.

The performance results for each of the test systems are presented in Table 2-6. The

I acceptance threshold is the ratio between the maximum output value and the next larger ,utput

value for a given feature vector. The complexity value is the total number of PEs in the

corresponding ANN. For the gearbox and the condensate pumps systems, the tesz set was

independent from the training set; for the fire pumps data these two sets were the same.

I
I
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TABLE 2-6. PHASE I PERFORMANCE RESULTS

CONDENSATE
GEARBOX PUMP FIRE PUMP

TRAINING SET SIZE 1125 240 480

TEST SET SIZE 6750 1400 4800

ACCEPTANCE THRESHOLD 1.4 1.2 2.0

PROBABILITY OF FALSE ALARM 0.000 0.000 0.000

PROBABILITY OF MISSED DETECTION 0.000 0.000 0.000

PROBABILITY OF DEFERRAL 0.035 0.020 0.020

PROBABILITY OF MISCLASSIFICATION 0.046 0.000 0.000

COMPLEXITY 27 PEs 28 PEs 45 PEs

I The performance results in Table 2-6 clearly show that the wavelet feature sets selected

above permit perfect detection performance with low deferral rates. While these results are

pleasing, we feel that an even more important principle has been demonstrated. We used exactly

I the same method to find features for the pumps as we used for the gearbox data. There was no

trial and error for the pump classifiers-these results are from the very first feature sets we picked.

This offers limited but important evidence that our results are not accidental-that we have a

methodology to analyze data from vibrating systems and derive small, focused feature sets that

support high-confidence fault detection and classification.

I
I
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SECTION 3

CONCLUSIONS AND RECOMMENDATIONS

3.1 CONCLUSIONS FROM THE PHASE I EFFORT

Our Phase I performance results speak for themselves. Incipient fault detection and

1 classification on bench-test and mild-operation data is quite feasible, even without exploiting many

additional techniques available. The CWT provides images from which feature selection is easy.

These features are simple and robust (high energy, narrow bandwidth).

3 There are no technological impediments to practical implementation. The selected wavelet

features can be computed using off-the-shelf digital filtering hardware. ANNs can be trained and

employed using off-the-shelf techniques.

The helicopter gearbox data used was bench test data. Bench test data cannot support a

Icomplete characterization of normal operating regimes and cannot include a complete set of

I disturbances to be encountered in the field. Moreover, seeded fault data cannot span the complete

set of possible failures, and may contain artifacts that assist detection. In summary, bench tests are

3 not reality. Reality is much less controlled, and hence much less predictable. Although the pump

data were obtained under actual operating conditions, these conditions were relatively benign and

I do not include all possible operating conditions. Therefore, the principal conclusion we draw from

I Phase I is to greet these results (or any Phase I results) with skepticism concerning their

applicability to field systems, and that any Phase II effort must focus on support for analysis and

3 design with real data under widely varied operating regimes.

We are well positioned to make the transition to real data in Phase II because of the

I methodology we established in Phase I. We have a specific procedure for selecting low-

3 dimensional, robust feature sets-and have demonstrated its efficacy on the two pump data sets.

I
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We deliberately avoided using all available processing techniques to solve the Phase I

problem--we wanted to be sure that a clean problem could be solved with simple techniques. We

arbitrarily limited ourselves to single-channel processing, with instantaneous classification. This

nakes available some additional processing techniques to meet the challenges posed by using real

data, and we propose to exploit them to the fidlest in Phase II.

3.2 PHASE II RECOMMENDATIONS

Phase II must address two classes of issues: 1) continued development of integrated

wavelet/ANN techniques for incipient fault detection, and 2) preparation for transition to Phase II

through the development of: a) a generic off-line software design suite and b) a hardware, real-

time feature extraction capability.

While Phase I demonstrated the feasibility of achieving good fault detection and

classification performance, the methods employed were neither terribly efficient nor able to

incorporate all sources of information. The major technical issues to be resolved relate to these two

areas-making the feature selection more efficient, and being able to fuse other sources of failure

information (e.g., multichannel data) into the classifier.

To achieve efficiency, one must integrate the software tools used to develop the Phase I

results (CWT routines, statistical analysis of candidate features, creation and editing feature sets,

ANN training and testing, ANN performance characterization, and deferral threshold trades), and

extend the technological bases of several of them. Phase II must consolidate all of the requisite

functionality currently provided by multiple software packages on two hardware platforms into a

single design package. KHOROS provides a perfectly acceptable shell for all of these functions.

The objective of Phase II in this area is thus to migrate all of these functions, along with any new

ones developed in the process of resolving the technical issues raised below, into a unified wavelet

feature analysis and selection software environment.

Some of the technical areas demanding additional research attention include the following:

3 Can one perform the statistical evaluation of wavelet features directly in wavelet-transform space

(i.e., for all candidate features) rather than for selected features in a post-transform analysis? Can
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one apply advanced multiscale estimation techniques to extract different features at different time

scales? How effective might be some additional wavelet feature types (e.g., wavelet packet

coefficients for switching systems, or multiscale autoregressive model identification)? Can recent

work on the interpretation of ANN outputs as likelihood functions be directly linked to the

statistical performance analysis currently done in feature space?

In addition, one is not limited to single-channel accelerometer data in many potential

applications. How can one process additional channels? Is there advantage to using a vector

wavelet transform to process all channels simultaneously? Can any statistical techniques derived

for use in wavelet transform space be adapted to vector transforms? Is there a need for different

techniques on different channels? To what extent can accelerometers mounted on the supports of a

vibrating system, rather than on its casing, supply information about environmental vibrations and

disturbances? How should this information influence the feature-selection process?

Finally, there are several issues related to incorporating incipient failure detectors into a

genuine Navy maintenance concept. What are the relative merits of detection alone vs. detection

and classification? What are acceptable false alarm rates? Are there other meaningful outputs from

an incipient fault detector (e.g., rate of development of an anomaly) that can be useful to an

operator? And, of course, what response time is required, and how can that time be used to

process a series of feature vectors in order to reduce false alarms and increase detection reliability.

Transition to Phase III demands a generic product that can select and extract wavelet

features for any specific application. This product must consist of two parts. The first is a design

capability, which an engineer can use to select feature sets relevant to any particular application.

The second is a real-time feature extractor, which (after setting some parameters to values

determined during the design effort) will produce digitally sampled feature vectors in real time.

Phase II must also address computational efficiency. The wavelet feature extractor in

Phase I executed about 100 times slower than real time. Most of the functions are simple filtering

operations, and many can be done in parallel (one wavelet feature per channel). Since the feature

extraction relies on one generic set of computations for each feature, parameterized to suit a
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particular application, now is the time to migrate these functions into simple, generic hardware.

Design options range from the use of standard DSP chips to a hybrid analog front-

end/microprocessor backend. Since accelerometers (and most foreseeable other sensors) supply

data at audio frequencies, there should be no need to push the state of the hardware art in signal

processing hardware design--off-the-shelf components should easily provide the necessary

performance and physical reliability.

Thus, Phase II has the central objective of producing a generic capability to rapidly design

and implement incipient failure detectors for a wide range of Navy applications. This capability

should consist of an off-line design software suite for feature selection, ANN training, and

performance evaluation. It should also include a hardware element that can be tuned to extract a

range of wavelet features, in real time, so that the same hardware element can be used for a variety

of applications.

Having a capability to demonstrate incipient fault detection is not enough, however. There

must be ample evidence that the capability delivers products that work. Therefore, a final objective

of Phase II must be not only to develop the wavelet feature selection and extraction capability, but

to demonstrate it on large volumes of real data.
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APPENDIX A

THE CONTINUOUS WAVELET TRANSFORM

I This appendix presents the basics of the Continuous Wavelet Transform, which underlies

our methodology for selecting features.

I A. 1 WAVELET BASES

Wavelets are a new approach to an old problem: building complicated functions out of

simple elements. Fourier analysis builds complicated functions out of sine and cosine functions.

I Wavelets use functions with limited time extent, so that they can better represent time-localized

aspects of a function than can a sum of infinite-duration sines and cosines.

All wavelet analyses are based on dilations, contractions, and translations of a basic mother

wavelet. If the dilations, contractions, and translations are orthogonal to one another, then the

wavelets form an orthonormal basis which is complete in many cases. One unique characteristic of

I wavelet analysis is that there are an infinite number of choices for a mother wavelet, allowing one

to continuously vary the tradeoff between time and frequency localization. Figure A-I shows the

I Haar wavelet, on the left, and the Kiang wavelet, on the right. Figure A-2 shows dilated and

contracted translates of the Haar wavelet.I

I i Figure A-i1. The Haar and Kiang Wavelets

In its most general form, a mother wavelet is any essentially time- and band-limited

I function of t, subject to the uncertainty principle limitations. (The uncertainty principle states that

i good time localization is obtained at the expense of frequency localization, and vice versa.)
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Figure A-2. Dilated Translates of the Haar Wavelet

I An affine wavelet family is obtained from dilations and translations of the mother wavelet.

Affine wavelets can bx, either continuous or discrete (usually dyadic). Dyadic wavelet families

I dilate by powers of two, and translate by integral multiples of power of two. Continuous wavelet

families dilate by arbitrary scale factors, and translate by arbitrary amounts.

A.2 WAVELETS AND SPECTRA

Each mother wavelet has a characteristic footprint in time/frequency space-a region where

it is sensitive to energy. Dilate it (or contract it) by a factor of two, and this region expands (or

contracts) by a factor of two along the time axis, and translates by an octave down (or up) along

the frequency axis. Translate it, and the footprint moves an equal amount along the time axis.

Take a set of dilations, contractions, and translations that cover all of time/frequency space, and

you have a complete basis set. Figure A-3 illustrates a typical subdivision by wavelets of the time-

frequency plane.

II different wavelet

basis functionsI ] .: .__=

Tim" localtion

Figure A-3. Typical Subdivision by Wavelets of the Time-Frequency Plane
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The exciting discoveries that kindled the recent interest in wavelets concern the existence of

such complete bases that are also orthonormal, and for which the mother wavelet has finite support

(is non-zero over a finite length of time).

A.3 WAVELET TRANSFORMS

Because there are an infinite number of mother wavelets, there are an infinite number of

wavelet transforms. By varying the choice of the mother wavelet, one can get wavelet transforms

that differ in both time and frequency localization.

An affine wavelet transform is the set of coefficients that multiply elements of a wavelet

family in order to represent a time function. Affine wavelet transforms can be either continuous or

discrete. Continuous wavelet transforms yield a complex-valued function of time and space

(frequency). Discrete (usually dyadic) wavelet transforms yield a finite number of coefficients for

an essentially bounded region of time and scale (frequency). All wavelet transforms contain

implicit or explicit feature detectors (one for each basis function). Figure A-4 presents a

classification of affine and non-affine wavelets based on their support (columns) and extent of their

filter realizations (rows).

Weyl-Heyerdahl wavelets (non-affine)

Bounded Semi-infinite Infinite

Finite Laplace(Ilrnltd)Hem*• • •••!.!,• Historical

Infinite Basset.......................

Affine wavelets

Bounded Semi-infinite Infinite

Finite Ha Lapc (1knWa) . Recent
i wtg, KW results

Infinite a "uInice }ar

I Figure A-4. Classification of Wavelets

i Wavelet selection affects preprocessor design. Efficient real-time feature extraction

imposes constraints on possible mother wavelets. We require causality and a finite dimensional
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realization of the wavelet generator. In this effort, we constrained the choice of mother wavelet

based on our need to implement a feature extractor without new leaps forward in electronics

technology. In particular, we limited our choices to those for which corresponding filters have a

finite dimensional realization. All of the wavelets with finite support possess this property, but

must be very long in order to localize the narrowband energy so obvious in the gearbox data.

Therefore, we selected a wavelet with semi-infinite support, so that it has a causal realization, and a

low-dimensional implementation. This wavelet was derived from auditory nerve response data

collected by Kiang in the 1960s, and we have honored him by appropriating his name for the

wavelet.

A.4 SIMPLE EXAMPLES OF CONTINUOUS WAVELET TRANSFORMS

This section presents color images of Continuous Wavelet Transforms (CWTs) of some

basic functions to give the reader greater insight into the time-frequency representation of signals

provided by the CWT based on the Kiang wavelet. In these images, the frequency scale is

logarithmic and runs vertically, increasing to the top, with frequency divisions corresponding to

octaves from 16 Hz to 16 kHz. The time scale runs horizontally, increasing to the right, with time

divisions 62.5 msec wide. Hue encodes the log magnitude of the CWT (blue = low, red = high).

Phase information is ignored.

A.4.1 Pulse and Sine Wave

The left image in Plate K is a wavelet transform, using the Kiang wavelet, of a 1 msec

pulse sampled at 48 kHz. Note the nulls at multiples of 1 kHz, reflecting the fact that the Kiang

wavelet is highly oscillatory and thus almost orthogonal to pulses that extend over an integral

number of complete cycles. Note that the finer scales allow very precise placement of the time that

the pulse occurs, and the absence of windowing effects.

The right image is a wavelet transform of a stepped sine wave. Note that initial transients

quickly give way to a very tight localization of the center frequency of the sine. Note also that the

Stransients decay more slowly for the coarser scales at the right of the figure.
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A.4.2 Superposition Examples

The left image in Plate L is a wavelet transform of the sum of the two functions in Plate K.

It provides clear evidence that a single transform can localize transient events well in time, while at

the same time localizing stationary frequencies.

The right image is a wavelet transform of two stepped sine waves of identical amplitude

and similar frequency. It provides a dramatic visualization of beat effects, as the pattern of the

peak is a periodic variation between two separate, lower-energy signals and a single, higher-energy

signal. As the difference between center frequencies increases, proportionally more of each beat

cycle is occupied by the area with two distinct frequency peaks. Note that the detail of the beat

structure is not typically present in sonograms, lofargrams, or waterfall displays-and it is this

visibility into time/frequency variations of signal structure that is the advantage of the CWT.

A.4.3 Noise Examples

The left image in Plate M is a wavelet transform of a white Poisson process emitting 1-

msec pulses, with a mean interarrival time of 10 msec. Note the clear separation between pulses

apparent at the finer scales at the left of the image, in contrast to the random texture at lower scales

at the right. There is clearly no structure to this signal that is localized in frequency.

The right image is a wavelet transform of a white Gaussian process. The apparent

concentration of energy at the finer scales (higher frequencies) is due to the fact that the bandwidths

of wavelets inevitably increase as they are contracted. Thus a process with equal energy at each

frequency in a Fourier transform has exponentially increasing power as frequency increases in a

wavelet transform.

I
I
I
I
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